17 research outputs found

    All the supersymmetric configurations of N=4,d=4 supergravity

    Get PDF
    All the supersymmetric configurations of pure, ungauged, N=4,d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a non-trivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.Comment: Latex file, 47 pages. References added and a few non-essential misprints correcte

    Thwarting Selfish Behavior in 802.11 WLANs

    Get PDF
    The 802.11e standard enables user configuration of several MAC parameters, making WLANs vulnerable to users that selfishly configure these parameters to gain throughput. In this paper we propose a novel distributed algorithm to thwart such selfish behavior. The key idea of the algorithm is for honest stations to react, upon detecting a selfish station, by using a more aggressive configuration that penalizes this station. We show that the proposed algorithm guarantees global stability while providing good response times. By conducting a game theoretic analysis of the algorithm based on repeated games, we also show its effectiveness against selfish stations. Simulation results confirm that the proposed algorithm optimizes throughput performance while discouraging selfish behavior. We also present an experimental prototype of the proposed algorithm demonstrating that it can be implemented on commodity hardware.Comment: 14 pages, 7 figures, journa

    Optimal configuration of a resource-on-demand 802.11 WLAN with non-zero start-up times

    Get PDF
    Resource on Demand in 802.11 Wireless LANs is receiving an increasing attention, with its feasibility already proved in practice and some initial analytical models available. However, while these models have assumed that access points (APs) start up in zero time, experimentation has showed that this is hardly the case. In this work, we provide a new model to account for this time in the simple case, of a WLAN formed by two APs where the second AP is switched on/off dynamically to adapt to the traffic load and reduce the overall power consumption, and show that it significantly alters the results when compared to the zero start-up time case, both qualitatively and quantitatively. Our findings show that having a non-zero start up time modifies significantly the trade-offs between power consumption and performance that appears on Resource on Demand solutions. Finally, we propose an algorithm to optimize the energy consumption of the network while guaranteeing a given performance bound.The work of J. Ortín was partly supported by the Centro Universitario de la Defensa through project CUD2013-05, Gobierno de Aragon (research group T98) and the European Social Fund (ESF). The work of P. Serrano and C. Donato was partly supported by the European Commission under grant agreement H2020-ICT-2014-2-671563 (Flex5Gware) and by the Spanish Ministry of Economy and Competitiveness under grant agreement TEC2014-58964-C2-1-R (DRONEXT)

    How do ALOHA and Listen before Talk Coexist in LoRaWAN?

    Get PDF
    In this work we address the analysis of a LoRaWAN network where some devices access the channel according to the standard-compliant ALOHA protocol, while other devices transmit according to a Listen Before Talk paradigm based on the CSMA/CA mechanism. To analyze this scenario, we propose a mathematical model to obtain the Data Extraction Rate both for CSMA/CA and ALOHA devices, as well as the average delay experienced by messages transmitted by CSMA/CA devices. Simulation results show the accuracy of our model, as well as the benefits of introducing CSMA/CA devices into the network, even when not all the devices implement this mechanism and must coexist with ALOHA devices

    A greedy approach for resource allocation in Virtual Sensor Networks

    Get PDF
    Virtual Sensor Networks (VSNs) envision the creation of general purpose wireless sensor networks which can be easily adapted and configured to support multifold applications with heterogeneous requirements, in contrast with the classical approach of wireless sensor networks vertically optimized on one specific task/service. The very heart of VSNs' vision is the capability to dynamically allocate shared physical resources (processing power, bandwidth, storage) to multiple incoming applications. In this context, we tackle the problem of optimally allocating shared resources in VSNs by proposing an efficient greedy heuristic that aims to maximize the total revenue out of the deployment of multiple concurrent applications while considering the inherent limitations of the shared physical resources. The proposed heuristic is tested on realistic network instances with notable performances in terms of execution time while keeping the gap with respect to the optimal solution limited (below 5% in the tested environments)

    Analysis of scaling policies for NFV providing 5G/6G reliability levels with fallible servers

    Get PDF
    The softwarization of mobile networks enables an efficient use of resources, by dynamically scaling and re-assigning them following variations in demand. Given that the activation of additional servers is not immediate, scaling up resources should anticipate traffic demands to prevent service disruption. At the same time, the activation of more servers than strictly necessary results in a waste of resources, and thus should be avoided. Given the stringent reliability requirements of 5G applications (up to 6 nines) and the fallible nature of servers, finding the right trade-off between efficiency and service disruption is particularly critical. In this paper, we analyze a generic auto-scaling mechanism for communication services, used to de(activate) servers in a cluster, based on occupation thresholds. We model the impact of the activation delay and the finite lifetime of the servers on performance, in terms of power consumption and failure probability. Based on this model, we derive an algorithm to optimally configure the thresholds. Simulation results confirm the accuracy of the model both under synthetic and realistic traffic patterns as well as the effectiveness of the configuration algorithm. We also provide some insights on the best strategy to support an energy-efficient highly-reliable service: deploying a few powerful and reliable machines versus deploying many machines, but less powerful and reliable.The work of Jorge Ortin was funded in part by the Spanish Ministry of Science under Grant RTI2018-099063-B-I00, in part by the Gobierno de Aragon through Research Group under Grant T31_20R, in part by the European Social Fund (ESF), and in part by Centro Universitario de la Defensa under Grant CUD-2021_11. The work of Pablo Serrano was partly funded by the European Commission (EC) through the H2020 project Hexa-X (Grant Agreement no. 101015956), and in part by Spanish State Research Agency (TRUE5G project, PID2019-108713RB-C52PID2019-108713RB-C52/AEI/ 10.13039/501100011033). The work of Jaime Garcia-Reinoso was partially supported by the EC in the framework of H2020-EU.2.1.1. 5G EVE project (Grant agreement no. 815074). The work of Albert Banchs was partially supported by the EC in the framework of H2020-EU.2.1.1. 5G-TOURS project (Grant agreement no. 856950) also partially supported by the Spanish State Research Agency (TRUE5G project, PID2019-108713RB-C52PID2019- 108713RB-C52/AEI/10.13039/501100011033)

    Thwarting Selfish Behavior in 802.11 WLANs

    Full text link

    Thwarting selfish behavior in 802.11 WLANs

    Get PDF
    The 802.11e standard enables user configuration of several MAC parameters, making WLANs vulnerable to users that selfishly configure these parameters to gain throughput. In this paper, we propose a novel distributed algorithm to thwart such selfish behavior. The key idea of the algorithm is for stations to react, upon detecting a misbehavior, by using a more aggressive configuration that penalizes the misbehaving station. We show that the proposed algorithm guarantees global stability while providing good response times. By conducting an analysis of the effectiveness of the algorithm against selfish behaviors, we also show that a misbehaving station cannot obtain any gain by deviating from the algorithm. Simulation results confirm that the proposed algorithm optimizes throughput performance while discouraging selfish behavior. We also present an experimental prototype of the proposed algorithm demonstrating that it can be implemented on commodity hardware.This work was supported by the European Community under the CROWD Project FP7-ICT-318115 and the Centro Universitario de la Defensa under Project CUD2013-05

    Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings

    Full text link
    We perform the characterization program for the supersymmetric configurations and solutions of the N=1\mathcal{N}=1, d=5d=5 Supergravity Theory coupled to an arbitrary number of vectors, tensors and hypermultiplets and with general non-Abelian gaugins. By using the conditions yielded by the characterization program, new exact supersymmetric solutions are found in the SO(4,1)/SO(4)SO(4,1)/SO(4) model for the hyperscalars and with SU(2)×U(1)SU(2)\times U(1) as the gauge group. The solutions also content non-trivial vector and massive tensor fields, the latter being charged under the U(1) sector of the gauge group and with selfdual spatial components. These solutions are black holes with AdS2×S3AdS_2 \times S^3 near horizon geometry in the gauged version of the theory and for the ungauged case we found naked singularities. We also analyze supersymmetric solutions with only the scalars ϕx\phi^x of the vector/tensor multiplets and the metric as the non-trivial fields. We find that only in the null class the scalars ϕx\phi^x can be non-constant and for the case of constant ϕx\phi^x we refine the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear in Class. Quantum Grav. 38 page
    corecore